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SUMMARY 

I There i s  t h e o r e t i c a l  and experimental evidence which i n d i c a t e s  t h a t  a sudden or 
I s t e p  change i n  t h e  ra te  a t  which t h e  l i q u i d  ni t rogen i s  i n j e c t e d  i n t o  the  c i r c u i t  of  
l a cryogenic wind tunnel  can cause a temperature f r o n t  i n  t h e  flow f o r  several tunnel  

c i r c u i t  t i m e s .  A temperature f r o n t ,  which occurs a t  i n t e r v a l s  equal  t o  t h e  c i r c u i t  
t i m e ,  is a sudden inc rease  o r  decrease i n  the  temperature of the flow followed by a 
near ly  cons tan t  temperature. Since these  f ron t s  can have an e f f e c t  on t h e  c o n t r o l  of 1 t he  tunnel  as w e l l  as t h e  t i m e  required t o  e s t a b l i s h  s teady  flow condi t ions  i n  t h e  
tes t  sec t ion  of  a cryogenic wind tunnel ,  tests were conducted i n  the  s e t t l i n g  cham- 

I ber i n  t h e  Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) i n  which high 
response instrumentat ion w a s  used t o  measure the poss ib l e  ex i s t ence  of t hese  tempera- 

l t u r e  f ron t s .  Three d i f f e r e n t  techniques were used t o  suddenly change the  r a t e  of 
l i q u i d  n i t rogen  being i n j e c t e d  i n t o  t h e  tunnel and t h e  r e s u l t s  from these  t h r e e  types 

I of tests showed t h a t  temperature f r o n t s  do not appear t o  be p resen t  i n  t h e  0.3-m TCT. 
Also included are t h e  v e l o c i t y  and pressure  f luc tua t ions  measured i n  t h e  s e t t l i n g  
chamber downstream of t h e  screens  and t h e  associated power spec t r a .  

I 

INTRODUCTION 

The requirements t o  s imula te  f u l l - s c a l e  f l i g h t  Reynolds numbers i n  wind tun- 

1 
I 
I F a c i l i t y  (NTF) a t  t h e  Langley Research Center. This tunnel  ob ta ins  high u n i t  

n e l s  have prompted an e f f o r t  t o  develop t ransonic  wind tunnels  with very high u n i t  
Reynolds numbers. This e f f o r t  has  l e d  t o  t h e  cons t ruc t ion  of t h e  National Transonic 

Reynolds numbers, i n  p a r t ,  by decreasing the  t o t a l  temperature of t h e  working f l u i d  
t o  cryogenic temperatures by i n j e c t i n g  l i q u i d  n i t rogen  (LN2) i n t o  the  c i r c u i t .  There 
is  t h e o r e t i c a l  evidence by Tripp ( r e f .  1) and experimental  evidence by Blanchard and 
D o r  ( r e f .  2 )  which suggest  t h a t  a s t e p  increase  or decrease i n  t h e  LN2 i n j e c t i o n  rate 
i n t o  t h e  c i r c u i t  of cryogenic wind tunnels  can cause temperature f r o n t s  i n  t h e  flow 
f o r  s e v e r a l  tunnel  c i r c u i t  t i m e s .  Flow simulation ca l cu la t ions  by Tripp i n  r e f e r -  
ence 1, based on a mathematical model of the  flow i n  t h e  0.3-m TCT, c l e a r l y  show 
temperature f r o n t s  as a r e s u l t  of a 3-sec pulsed inc rease  i n  t h e  LN2 i n j e c t i o n  rate 
from 0.75 kg/sec t o  1.1 kg/sec. (See f i g .  1.) The temperature f r o n t s ,  which occur 
a t  i n t e r v a l s  equal  t o  t h e  c i r c u i t  t i m e ,  are the near ly  v e r t i c a l  decreases  (and 

I then inc reases )  i n  temperature followed by a near ly  cons t an t  temperature between 
1 t h e  v e r t i c a l  f r o n t .  Resul ts  from the  ONERA/CERT (Off ice  Nat ional  d 'e tudes  e t  de 

1 in jec tor -dr iven  cryogenic wind tunnel  (see f ig .  2 )  show temperature f r o n t s  f o r  a 
Recherches A&ospatiates/Center d 'e tudes  e t  de Recherches de Toulouse) T '  2 ( r e f .  2 )  

l a r g e  s t e p  change i n  t h e  LN2 i n j e c t i o n  rate ( i -e . ,  LN2 va lve  c u t  o f f  from a rela- 
t i v e l y  high LN2 flow rate) .  

i a f ter  a sudden c losu re  of t he  LN2 i n j e c t i o n  a t  a s t agna t ion  temperature of  about  
1 135 K, i s  n o t  s u r p r i s i n g  s i n c e  t h e  tunnel  i s  i n t e r n a l l y  in su la t ed  with cork and t h e  

flow i s  d r iven  by e j e c t o r s  operated by a i r  a t  273 K. 
a t u r e  f r o n t s ,  s imilar  t o  those found i n  t h e  T I 2  tunnel ,  would e x i s t  i n  a fan-driven 
tunnel  such as t h e  Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) made o u t  
of aluminum and insu la t ed  ex terna l ly .  However, because of t h e  following reasons,  an 
experimental  i n v e s t i g a t i o n  w a s  undertaken t o  determine i f  t hese  temperature f r o n t s  
e x i s t  i n  t h e  0.3-m TCT: (1) the  t h e o r e t i c a l  r e s u l t s  of  Tripp ( r e f .  1) and t h e  
experimental  measurements of Blanchard and Dor both showed temperature f r o n t s  (see 
f i g s .  1 and 2), ( 2 )  temperature f r o n t s  could possibly impact t h e  con t ro l  o f  a 

The occurrence of temperature f r o n t s  i n  t h e  T ' 2  t unne l ,  

I t  seemed doubtful  t h a t  temper- 
I 
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cryogenic wind tunnel  i n  terms of increased LN2 consumption and increased t i m e  t o  
reach a s teady-state  condi t ion,  and ( 3 )  temperature f r o n t s  could poss ib ly  pe r tu rb  t h e  
s teady-s ta te  operat ion with sp ikes  or d i s c o n t i n u i t i e s  i n  the  t o t a l  temperature,  
r e s u l t i n g  from even s m a l l  changes i n  t h e  LN2 i n j e c t i o n  rate. 

I t  is  t h e  purpose of t h i s  paper t o  p re sen t  t he  r e s u l t s  of temperature measure- 
ments, wi th  rapid response instrumentat ion ( i - e . ,  a hot-wire probe) ,  during a sudden 
change i n  the rate of LN2 i n j ec t ion .  The LN2 i n j e c t i o n  w a s  a l t e r e d  by t h r e e  d i f f e r -  
e n t  con t ro l  techniques which r ap id ly  increased (or decreased) the  amount of  LN2 
i n j e c t e d  i n t o  the  tunnel.  I n  add i t ion  t o  t h e s e  temperature measurements, which w e r e  
made during periods of r ap id ly  changing t o t a l  temperature,  t h e  r e s u l t s  of v e l o c i t y  
and pressure  f luc tua t ion  measurements made i n  t h e  s e t t l i n g  chamber during condi t ions  
of  s teady-state  flow are presented.  The r e s u l t s  of a l i m i t e d  s tudy  t o  determine if 
LN2 d rop le t s  were present  i n  t h e  flow is  also presented.  

SYMBOLS 

D diameter of s e t t l i n g  chamber 

F reduced frequency , 2lTDf/u 

f frequency 

gaseous ni t rogen GN2 

LN2 l i qu id  n i t rogen  

M Mach number 

N number of blades on f an ,  1 2  

n fan r o t a t i o n a l  speed 

P(!), P($ 
p robab i l i t y  d i s t r i b u t i o n s  of t h e  normalized f l u c t u a t i n g  pressures  and 

v e l o c i t i e s ,  r e spec t ive ly  

P press  u r  e 

R Reynolds number per  f o o t  

T temperature 

t C c i r c u i t  t i m e  

U ve loc i ty  p a r a l l e l  to  c e n t e r l i n e  of  s e t t l i n g  chamber 

.-d .., 
U U 

U U 
= as a func t ion  of F 

vc valve command 

Y r a t i o  of s p e c i f i c  h e a t s  
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Subscr ip ts  : 

i i n i t i a l  condi t ion before  change i n  LN2 i n j e c t i o n  r a t e  

s c  s e t t l i n g  chamber 

t to t a l  condi t ions 

aJ free-stream condi t ions  i n  t e s t  sec t ion  

Superscr ip ts :  

u root-mean-square value 

- mean value 

APPARATUS AND DATA REDUCTION 

F a c i l i t y ,  Tes t  Conditions, and Tunnel Controls 

The measurements were made i n  the  s e t t l i n g  chamber of t he  0.3-m TCT. (See 
r e f s .  3 and 4.)  A sketch of t he  tunnel  i s  shown i n  f i g u r e  3 ( a ) .  This f a c i l i t y  is  a 
fan-driven, c losed -c i r cu i t  wind tunnel  using ni t rogen as the  working f l u i d .  The 
i n j e c t i o n  of l i q u i d  n i t rogen  i n t o  the  tunnel  c i r c u i t ,  j u s t  downstream of t h e  t es t  
sec t ion ,  allows cryogenic t o t a l  temperatures t o  be obtained. For s teady opera t ing  
condi t ions,  the  hea t  of compression of the  fan is  removed by the  i n j e c t i o n  of l i q u i d  
ni t rogen.  (See f i g .  3 ( a ) . )  Under equilibrium condi t ions ,  t he  excess m a s s  is  removed 
from t h e  c i r c u i t  through an exhaust system located j u s t  upstream of the  s e t t l i n g  
chamber. (See f i g .  3 ( a ) . )  The t e s t  s ec t ion  is 8 inches wide and 24 inches high with 
s l o t s  i n  the  f l o o r  and c e i l i n g .  The tunnel  can be operated over the  following 
condi t ions:  

1.1 atm < pt < 6.0 atm 

0 . 1  < M, < 0.9 

7 8  K < Tt < 320 K 

The t e s t  condi t ions used f o r  t he  p re sen t  test were: 

2.0 atm < pt < 5.8 atm 

0.3 < M, < 0.8 

140  K < Tt < 280 K 

A schematic of t he  con t ro l  system t h a t  regula tes  t he  t o t a l  temperature,  t o t a l  
p ressure ,  and Mach number i s  shown i n  f i g u r e  3 ( b ) .  The purpose of t he  con t ro l  system 
is  t o  r ap id ly  and accura te ly  set  and hold constant  with time the  tunnel  t o t a l  
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temperature and pressure and the  t e s t - sec t ion  Mach number. 
regulated by the  amount of l i q u i d  n i t rogen  in j ec t ed  i n t o  the  tunnel  through d i g i t a l  
valves .  These valves  a r e  microprocessor cont ro l led  and have a temperature feedback 
from a thermocouple located i n  the  s e t t l i n g  chamber (temperature loop (T-loop)).  The I 
LN2 i s  in j ec t ed  downstream of the  t es t  sec t ion ,  j u s t  ahead of t h e  f i r s t  t u r n ,  through 1 

four  nozzles  spaced 90° a p a r t  around the  circumference of t he  tunnel .  The flow r a t e  ~ 

through each of the  nozzles i s  con t ro l l ed  by a d i g i t a l  valve.  The d i g i t a l  valves ,  
which have a very f a s t  response, a r e  a l s o  used to  accura te ly  measure the  flow r a t e  of 1 
LN2 i n t o  the  tunnel.  
and c o n s i s t s  of a number of ca l ib ra t ed ,  binary-weighted elements opera t ing  e i t h e r  I 
f u l l y  open or f u l l y  closed. The ind iv idua l  elements i n  the  d i g i t a l  valves  a r e  sole-  
noid actuated,  with the  command f o r  the  required flow area updated every 0.10 sec  by 
the  microprocessor. The d i g i t a l  valves  have a f u l l  a rea  con t ro l  speed of 0.50 sec.  1 
(See r e f s .  5 and 6.)  

The t o t a l  temperature i s  

Each d i g i t a l  valve has a r e so lu t ion  of 1 i n  1024 ( i . e . ,  10 b i t )  

The t o t a l  p ressure  i n  the  tunnel is  ad jus ted  by two hydraul ica l ly  dr iven  valves I 
which a r e  control led by an analog s i g n a l  from a microprocessor which has feedback 
from a pressure transducer connected to  the  s e t t l i n g  chamber (pressure  loop 
(P-loop)) .  The t w o  valves  are loca ted  i n  p ipes  which exhaust t o  the  atmosphere from I 

t he  low-speed end of the  tunnel.  (See f i g .  3 ( a ) . )  One of t h e  pressure  con t ro l  I 
valves  has a ca l ib ra t ed  s t e p  input  con t ro l  f o r  coarse  con t ro l  and t h e  o the r  valve i s  
a c a l i b r a t e d ,  p ropor t iona l ly  va r i ab le  valve f o r  a f i n e  con t ro l  of pressure.  I 

The tes t - sec t ion  Mach number is  cont ro l led  by a t h i r d  microprocessor which con- I 

t r o l s  t he  ro t a t iona l  speed of the  fan and has a feedback con t ro l  loop from a t o t a l -  , 
pressure  gauge (connected t o  a probe upstream of  the  t e s t  s ec t ion )  and a s t a t i c -  
pressure  gauge (connected t o  a pressure  o r i f i c e  on t h e  s idewal l  of t h e  t e s t  s e c t i o n ) ,  1 

t r o l  systems f o r  t o t a l  temperature,  t o t a l  p ressure ,  and t e s t - sec t ion  Mach number each 
has a dedicated microprocessor and can be operated i n  e i t h e r  a manual mode or an 
automatic mode. I n  the  automatic mode, t h e  th ree  ind iv idua l  microprocessors con t ro l  
the  respect ive valves and motor speed based on the  command s e t  po in t s  f o r  t o t a l  tem- 
pera ture ,  t o t a l  pressure,  and Mach number. I n  the  manual mode, the  con t ro l  valves  
a r e  s e t  t o  a given percent  opening and the  fan  motor i s  s e t  t o  a given r o t a t i o n a l  
speed i n  rpm. For a l l  t h e  r e s u l t s  presented i n  t h i s  paper f o r  t he  time v a r i a t i o n  of 
t o t a l  temperature, the  pressure  and Mach number microprocessors were operated i n  an 
automatic mode with cons tan t  command s e t  po in t .  Therefore, when t h e  t o t a l  tempera- 
t u r e  w a s  changed, the  changes i n  Mach number and t o t a l  p ressure  were s m a l l .  

from which the Mach number is  ca lcu la ted  (Mach loop (M-loop)). Therefore,  t he  con- i 

Although no measurement records were taken of t he  simultaneous t o t a l  p ressure  
and Mach number v a r i a t i o n  during the  time the  t o t a l  temperature was r ap id ly  changing, 
t he  s t u d i e s  by Thibodeaux and Balakrishna i n  re ference  7 p r e d i c t  t h a t  to ta l -pressure  
f luc tua t ions  would remain less than 5 percent  f o r  comparable temperature excursions.  
I n  addi t ion ,  v i s u a l  observat ions during the  p re sen t  t e s t s  i nd ica t ed  t h a t  t he  changes 
i n  Mach number were s m a l l  dur ing t h e  temperature excursions.  

The simulation of Mach number i n  re ference  7 i n  response t o  the  changes i n  t o t a l  
temperature d id  not  include the  closed-loop feedback con t ro l  t h a t  was incorporated i n  
the  tunnel  Mach-loop c o n t r o l l e r  f o r  t h e  tests described i n  t h i s  paper. Therefore,  no 
quan t i t a t ive  assessment can be made of t he  Mach number response during the  change i n  
t o t a l  temperature. However, v i s u a l  observat ions during the  t e s t s  ind ica ted  the  
change i n  Mach number was s m a l l  dur ing the  changes i n  t o t a l  temperature.  
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I Hot-wire Anemometer and Probe 

A commercially ava i l ab le ,  constant  temperature anemometer (DISA 55M system with ' 
The 

~ probe holder  and probe were mounted i n  the  s e t t l i n g  chamber normal t o  the  flow, with 
' t h e  probe on the  c e n t e r l i n e  of the  s e t t l i n g  chamber. The needles ,  which supported 
I t h e  hot  w i r e ,  were bent  90' so t h a t  the  ends of t h e  needles  pointed upstream 0.75 i n .  

~ from the a x i s  of t h e  probe holder.  ' from platinum-coated tungsten and w a s  located about 7.75 i n .  downstream of the  
screens.  (See r e f .  3 . )  An overheat of 1.8 was used t o  measure the  ve loc i ty  f luc tua-  I t i o n s  i n  t h e  s e t t l i n g  chamber where the  overheat i s  def ined a s  the  ra t io  of ho t  
r e s i s t a n c e  t o  the  cold r e s i s t ance  of the  ho t  w i r e .  The overheat  w a s  var ied  by chang- 
ing the  br idge r e s i s t ance .  
during the  temperature f r o n t  inves t iga t ion ,  the overheat  w a s  reduced t o  1.15. 

55M10CTA standard br idge)  and hot-wire probe were used during the  p re sen t  test .  

The hot  wire, 0.00015 i n .  i n  diameter,  w a s  made 

I n  order  t o  dynamically measure the  t o t a l  temperature 

I Pressure Transducer 

A commercially ava i l ab le  pressure  transducer (Endevco model number 8510-5) 
designed t o  opera te  a t  cryogenic temperatures w a s  used t o  measure the  f l u c t u a t i n g  
pressures  a t  t he  w a l l  of t he  s e t t l i n g  chamber. The t ransducer  was 0.125 i n .  i n  diam- 
e t e r  with a s l o t t e d  cover t o  p r o t e c t  the  diaphragm. The t ransducer  w a s  a d i f f e ren -  
t i a l  p ressure  gauge having a range of f 5  p s i .  A re fe rence  tube connected t o  the  back 
s i d e  of the  diaphragm sensed the  mean s t a t i c  pressure i n  t h e  s e t t l i n g  chamber with 
about 10 f t  of 0.040-in-diameter tubing t o  minimize pressure  f luc tua t ions  on the back 
s i d e  of the  diaphragm. The t ransducer  w a s  mounted f l u s h  t o  the  in s ide  sur face  of the  
s e t t l i n g  chamber with a plug which w a s  f a i r e d  i n t o  the  i n s i d e  sur face  of t he  4-ft-  
diameter s e t t l i n g  chamber. 
both pressure  and temperature. 

The pressure  transducer w a s  c a l ib ra t ed  f o r  v a r i a t i o n s  i n  

I 

Total-Temperature Variat ions 

I n  order  to  inves t iga t e  the  exis tence of temperature f r o n t s  i n  the  0.3-m TCT 
caused by t h e  v a r i a t i o n  of t he  i n j e c t i o n  r a t e  of LN2,  t h e  i n j e c t i o n  of LN2 w a s  va r i ed  
i n  t h r e e  ways. The f irst  method, r e fe r r ed  t o  a s  t h e  "auto-ramp" mode, w a s  achieved 
with the  microprocessor operat ing i n  an automatic mode t o  con t ro l  t he  to ta l  tempera- 
t u re .  I n  t h i s  mode, t h e  valve commands var ied based on the command s e t  p o i n t  of 
t o t a l  temperature. 
steady-flow condi t ion  i n  the  tes t  sec t ion  a t  a f ixed  t o t a l  temperature, and then 
s e t t i n g  i n t o  the  microprocessor con t ro l l e r  a new t o t a l  temperature 9 K lower than 
the  s teady-s ta te  value.  The sudden decrease i n  t o t a l  temperature occurred when the  
microprocessor executed the  command and increased the  LN2 flow rate through t h e  
d i g i t a l  valves.  During the  time the  tunnel was a t t a i n i n g  the  new lower temperature 
under t h e  con t ro l  of t he  microprocessor, the  o r i g i n a l  s teady-s ta te  temperature value 
w a s  r e s e t  i n t o  t h e  c o n t r o l l e r  and t h e  9-K increase w a s  i n i t i a t e d  as a valve command 
when a total- temperature  decrease of 9 K w a s  reached. The change i n  temperature 
during t h i s  mode of operat ion w a s  l imi ted  t o  9 K because of LN2 i n j e c t i o n  l i m i t s  
b u i l t  i n t o  t h e  c o n t r o l l e r .  Data were taken u n t i l  the  o r i g i n a l  temperature w a s  
approached or reached. 

The auto-ramp method w a s  performed by first e s t ab l i sh ing  a 

The second method f o r  changing the  t o t a l  temperature w a s  r e f e r r ed  t o  as the  
"manual s tep"  mode which required t h e  microprocessor c o n t r o l l e r  t o  be s e t  i n  a manual 
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mode ( i .e . ,  constant LN2 valve command). Af te r  s teady f l o w  w a s  es tab l i shed  ( a t  a 
cons tan t  valve command) i n  t he  t e s t  s ec t ion ,  a new higher  value f o r  t he  valve command 
w a s  d i a l e d  in to  t h e  c o n t r o l l e r  which ca l l ed  for  an increased LN2 flow r a t e  i n t o  the  
tunnel .  
than the  s teady-state  mass-flow i n j e c t i o n  rate. The decrease i n  t o t a l  temperature 
w a s  i n i t i a t e d  by the  microprocessor c o n t r o l l e r  when it w a s  manually ac t iva t ed  and a 
maximum temperature change of 20 K w a s  a r b i t r a r i l y  chosen. 
decreasing,  the o r i g i n a l  valve command w a s  set  i n t o  the  c o n t r o l l e r ,  and when the  
temperature was reduced by 20 K, t he  microprocessor c o n t r o l l e r  was again ac t iva t ed  
i n  order  t o  re turn  t o  the  o r i g i n a l  to ta l  temperature. Again da t a  were recorded over 
the  t o t a l  time the  temperature w a s  changing. 

' 

This change i n  the  LN2 i n j e c t i o n  r a t e  ranged from 20 t o  100 percent  g rea t e r  

~ 

While t h e  temperature w a s  ; 
I 
I 
' 

The th i rd  method of rap id ly  changing t o t a l  temperature cons is ted  of shu t t ing  o f f  1 
the  LN2 i n j ec t ion  valves  and wai t ing f o r  t he  t o t a l  temperature t o  increase  about 
20 K. After  t h i s  20-K change i n  the  t o t a l  temperature, t he  o r i g i n a l  valve command 

given valve command. 

1 
was ac t iva t ed  and the  o r i g i n a l  temperature was approached i n  the  manual mode a t  a ~ 

During the time t h a t  t he  temperature c o n t r o l l e r  w a s  a l t e r i n g  the  flow of LN2 I 
I i n t o  the  tunnel,  t h e  microprocessor c o n t r o l l e r s  f o r  t o t a l  pressure  and Mach number 

w e r e  i n  t h e  automatic mode and maintained a near ly  cons tan t  to ta l  pressure  and Mach 
number, as discussed e a r l i e r .  

RESULTS AND DISCUSSION 

Total-Temperature Measurements 

For the  temperature measurements i n  t he  s e t t l i n g  chamber, the  overheat  of t he  
hot-wire probe was maintained a t  1.15. Based on the  work of Kovssznay ( r e f .  81, it 
w a s  assumed t h a t  a t  t h i s  value of t he  overheat ,  t h e  wire responded predominantly t o  
v a r i a t i o n s  i n  t o t a l  temperature. The mean vol tages  measured across  t h e  ho t  wire  
were ca l ib ra t ed  with t o t a l  temperatures measured with a platinum r e s i s t a n c e  thermom- 
e t e r ,  and the r e s u l t s  of t h i s  c a l i b r a t i o n  were used t o  convert  t he  measured vol tages  
t o  t o t a l  temperatures. Thus the  v a r i a t i o n  i n  hot-wire vol tage  w a s  used t o  determine 
the  t o t a l  temperature i n  the  s e t t l i n g  chamber during L\e previously descr ibed 
th ree  methods used f o r  sudden changes i n  LN2 i n j e c t i o n  r a t e s  ( i . e . ,  (1) auto  ramp, 
( 2 )  manual s t ep ,  and ( 3 )  c lose  LN2 va lves ) .  The time r a t e  of change of t he  mean 
vol tages  measured across  the  hot  w i r e  were recorded on a tape  recorder ,  the  taped 
d a t a  were d ig i t i zed  a t  a rate of 100 t imes/sec,  and the  temperatures w e r e  ca lcu la ted  
from these  d ig i t i zed  values.  

Examples of t he  v a r i a t i o n  of  t o t a l  temperature with time €or t h e  t h r e e  types 
of s t e p  changes a r e  presented i n  f igu res  4 through 8 f o r  a t e s t - sec t ion  Mach number 
of 0.70 with the  microprocessors con t ro l l i ng  t o t a l  pressure  and Mach number i n  the  
automatic mode. The da ta  a r e  presented f o r  t h ree  d i f f e r e n t  t i m e  s c a l e s  w i t h  t he  
f i r s t  p l o t  represent ing the  v a r i a t i o n  of t o t a l  temperature with time for  a major por- 
t i o n  of t he  t i m e  t h a t  the  temperature w a s  changing. However, f o r  f i g u r e s  4 ( a ) ,  5 ( a ) ,  
6 ( a ) ,  7 ( a ) ,  and 8 ( a ) ,  the  time s c a l e  is  too  compressed t o  i d e n t i f y  conclusively the  
exis tence o r  nonexistence of any temperature f r o n t s ;  t he re fo re ,  t h e  t i m e  s c a l e  w a s  
expanded f o r  15 sec f o r  a l l  f i v e  f i g u r e s ,  and only a po r t ion  of the  temperature 
s t e p  is  included i n  the  second por t ion  ( i . e . ,  (b) p a r t )  of the  f i v e  f igu res .  I n  an 
e f f o r t  t o  ge t  a d i r e c t  comparison with t h e  temperature f r o n t  d a t a  from the  ONERA/CERT 
T ' 2  wind tunnel shown i n  f igu re  2 ,  the  t i m e  s c a l e  w a s  f u r t h e r  expanded for  3 Sec, 
s t a r t i n g  j u s t  before the  i n i t i a l  change i n  Tt occurred. The c i r c u i t  t i m e  tc 
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ca lcu la ted  from an equation developed by Balakrishna ( r e f .  6) is  indica ted  i n  a l l  t he  
f igu res  with the  15- and 3-sec expanded t i m e  sca les .  The equation f o r  c i r c u i t  time 
i s  a funct ion of s tagnat ion  pressure,  s tagnat ion temperature, and t e s t - s e c t i o n  Mach 
number and i s  determined by d iv id ing  the  expression f o r  t h e  t o t a l  mass of gas i n  the  
tunnel by the  m a s s  r a t e  of flow through the  tunnel c i r c u i t .  

The previously descr ibed auto-ramp method of suddenly changing t h e  t o t a l  tem- 
pe ra tu re  with a sudden change of LN2 i n j ec t ion  i s  shown i n  f i g u r e  4 with t h e  e n t i r e  
sequence of events  shown i n  f i g u r e  4(a)  f o r  a per iod  of about 20 sec. The i n i t i a l  
t o t a l  temperature a t  time p r i o r  t o  po in t  A i n  f i g u r e  4 (a )  w a s  s e t  a t  1 4 1  K by the  
T-loop microprocessor i n  the  automatic mode. A t  po in t  A,  a 132-K command w a s  i npu t  
i n t o  the  microprocessor c o n t r o l l e r  which immediately opened t h e  four  LN2 va lves  t o  a 
near ly  100-percent open pos i t i on  which resu l ted  i n  a r ap id  decrease i n  temperature. 
The o r i g i n a l  temperature se t  po in t  of 1 4 1  K was s e t  i n t o  the  microprocessor as the  
t o t a l  temperature approached po in t  B. When t h e  c o n t r o l l e r  w a s  again ac t iva t ed  a t  
po in t  B ( i . e . ,  t o  r e tu rn  t o  a temperature of 132 K by reducing the  valve opening),  
t he re  w a s  a rap id  increase  i n  temperature w i t h  an overshoot i n  temperature t o  
po in t  C. After  po in t  C ,  t h e  microprocessor began t o  reduce the  tunnel  t o t a l  t e m -  
pe ra tu re  t o  the  des i red  1 4 1 - K  condi t ion as noted by the  temperature l e v e l  a t  p o i n t  D. 
The 15-sec expanded region noted i n  f igu re  4 (a )  i s  shown i n  f i g u r e  4(b)  along with a 
tunnel  c i r c u i t  time of 0.89 sec.  Based on a knowledge of the  c i r c u i t  t i m e ,  no d is -  
ce rn ib l e  temperature f r o n t  could be de tec ted  i n  t h e  15-sec expanded region. Simi- 
l a r l y  t h e  3-sec expanded region shown i n  f igure  4 ( c )  ind ica ted  no temperature f r o n t  
a f t e r  t h e  sudden increase  i n  the  r a t e  of LN2 i n j e c t i o n  i n t o  t h e  tunnel  c i r c u i t .  

The total- temperature  t i m e  h i s t o s i e s  r e s u l t i n g  from the  manual-step technique 
of suddenly changing ( i . e . ,  increas ing)  the  r a t e  of LN2 i n j e c t i o n  a r e  shown i n  f ig -  
ures  5 and 6 f o r  i n i t i a l  t o t a l  temperatures of 278 K and 1 4 1  K, respec t ive ly .  I n  
f i g u r e  5 ( a ) ,  the  i n i t i a l  manual s t e p  occurred a t  po in t  A when the  valve command t o  
the  microprocessor, which w a s  i n  t he  manual mode, w a s  a c t iva t ed  t o  change t h e  valve 
s e t t i n g  from 18 percent  t o  22 percent  of f u l l  open. Af te r  t he  valves  were opened 
the  i n i t i a l  temperature of 278 K decreased rapidly and eventual ly  approached a t e m -  
pe ra tu re  of about 257 K. A t  po in t  B, t he  valve command w a s  reduced t o  18 percent and 
the  microprocessor ac t iva t ed .  This process r e su l t ed  i n  a rap id  increase  i n  the  t e m -  
pera ture .  The expanded 15-sec and 3-sec regions are shown i n  f igu res  5(b)  and 5 ( c ) ,  
r e spec t ive ly ,  with the  0.62-sec c i r c u i t  time indicated on both f igures .  Again, as 
w a s  noted i n  the  auto-ramp method of temperature v a r i a t i o n ,  t he  manual-step method 
indica ted  t h a t  while t he re  w a s  an i n i t i a l l y  s teep  f a l l - o f f ,  t he re  were no d i s c e r n i b l e  
f r o n t s  occurr ing a t  i n t e r v a l s  of t he  c i r c u i t  t i m e .  The manual-step method w a s  
repeated i n  f i g u r e  6 f o r  a lower i n i t i a l  total  temperature of 1 4 1  K and f o r  a l a r g e r  
change i n  the  valve command. 
microprocessor c o n t r o l l e r  w a s  changed from an i n i t i a l  value of 2 1  percent  t o  50 per- 
cen t  of f u l l  open. There w a s  a sudden decrease i n  t o t a l  temperature a f t e r  t h e  open- 
ing of the  va lves  w a s  increased and as the  t o t a l  temperature approached 130 K t he  
valve command w a s  re turned t o  2 1  percent  a t  po in t  B. After  p o i n t  B t h e r e  w a s  a rap id  
increase  i n  t o t a l  temperature followed by a more gradual  increase  toward t h e  o r i g i n a l  
i n i t i a l  temperature. The expanded regions of 15 sec and 3 sec shown i n  f i g u r e s  6 (b )  
and 6 ( c )  along wi th  t h e  c i r c u i t  t i m e  of 0.89 sec again i n d i c a t e  c l e a r l y  t h a t  no d is -  
c e r n i b l e  temperature f r o n t s  e x i s t .  

A t  po in t  A i n  f igure  6 ( a ) ,  t he  LN2 valve command t o  the  

The f i n a l  method of suddenly changing the t o t a l  temperature i n  the  wind 
tunnel  w a s  accomplished by c los ing  the  LN2 i n j ec t ion  valve a s  shown i n  f i g u r e s  7 
and 8 f o r  i n i t i a l  t o t a l  temperatures of 278  K and 134 K, r espec t ive ly .  This w a s  
the  method used i n  the  ONERA/CERT T I 2  wind t u n n e l  t o  check f o r  temperature f ron t s .  
(See f i g .  2 . )  The t o t a l  p ressure  f o r  f i g u r e s  7 and 8 were 2.04 and 3.40 a t m ,  
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r e spec t ive ly ,  and were k e p t  near ly  cons tan t  with the  to t a l -p re s su re  microprocessor 
i n  the  automatic mode. 
processor  control led i n  the  manual mode, t h e  LN2 i n j e c t i o n  valves  were closed from an 
i n i t i a l  valve command of about 20 percent .  
c losed t h e r e  w a s  a rap id  increase  i n  temperature up t o  po in t  B a t  which t i m e  t he  
valves  were opened t o  the  o r i g i n a l  valve command of 20 percent .  The expanded time I 

s c a l e s  of 15  sec and 3 sec  are shown i n  f i g u r e s  7 ( b )  and 7 ( c ) ,  r e spec t ive ly ,  along I 

with t h e  c i r c u i t  t i m e  of 0.62 sec .  It  again appears t h a t  f o r  t h e  c i r c u i t  time indi -  1 
ca ted  on t h e  f igures ,  no temperature f r o n t s  were present .  I 

A t  po in t  A i n  f i g u r e  7 ( a ) ,  with the  total- temperature  micro- I 

A f t e r  t he  LN2 i n j e c t i o n  valves  were , 
, 

The closing of the  LN2 i n j e c t i o n  valves  w a s  repeated a t  a lower i n i t i a l  t o t a l  
temperature of 134 K and a higher  t o t a l  p ressure  of 3.40 atm. The r e s u l t s  i n  f ig -  
ure  8 ( a )  show t h a t  when the  LN2 i n j e c t i o n  valves  were closed a t  po in t  A,  t he re  was a 
s teady increase i n  the  t o t a l  temperature. A t  po in t  B, t h e  valves  were reopened t o  
44 percent  which r e su l t ed  i n  an i n i t i a l  rap id  decrease i n  t o t a l  temperature.  Again ' 
the  expanded t i m e  s ca l e s  of 15 and 3 sec  are shown i n  f i g u r e s  8 ( b )  and 8 ( c ) ,  respec- I 

t i v e l y ,  with an ind ica ted  c i r c u i t  time of 0.93 sec.  A s  i n  a l l  t h e  previous f i g u r e s  
I 

I 

I 

with an expanded t i m e  s c a l e ,  t he re  were no d i s c e r n i b l e  temperature f r o n t s .  

Although some of the  da t a  represent  a l a r g e  change i n  t h e  t o t a l  temperature with 1 

time, with large s t e p  changes i n  the  LN2 flow r a t e ,  t h e r e  appears t o  be no evidence 
of temperature f r o n t s  e x i s t i n g  a t  i n t e r v a l s  of t he  c i r c u i t  time i n  t h e  0.3-m TCT f o r  
the  conditions of t h e  p re sen t  t e s t s ;  o r  if they are p resen t ,  they are of such a s m a l l  
amplitude as t o  be undetectable  with the  techniques of t h i s  i nves t iga t ion .  

The temperature f r o n t s  t h a t  were pred ic ted  by Tripp to  e x i s t  i n  t h e  0.3-m TCT i n  
reference 1 ( f i g .  1) were not  found i n  the  r e s u l t s  of t h i s  test .  The reason tempera- 

experimentally,  can possibly be a t t r i b u t e d  t o  t w o  a r eas  i n  Tr ipp ' s  mathematical model 
which d id  not properly account f o r  two of t h e  complex flow mechanisms t h a t  e x i s t  i n  I 

t he  0.3-m TCT: (1) the  dynamics of the  h e a t  t r a n s f e r  between t h e  gas and the  tunnel  
l i n e r  and ( 2 )  t he  mixing dynamics i n  the  tunnel  c i r c u i t  and p a r t i c u l a r l y  i n  the  
region of the  fan.  

t u r e  f r o n t s  were predicted from numerical r e s u l t s ,  i n  re ference  1, b u t  no t  found 1 

The temperature f r o n t s  t h a t  were observed i n  t h e  ONERA/CERT T I 2  i n j e c t i o n  dr iven 

I n  add i t ion ,  
wind tunnel  (see f i g .  2 and r e f .  2 )  could almost be expected because of t he  i n t e r n a l  
i n su la t ion  which g r e a t l y  reduced the  hea t  t r a n s f e r  a t  t h e  tunnel  l i n e r .  
a f t e r  the  LN2 supply was c u t  o f f ,  t h e  i n j e c t o r s  continued t o  supply 273 K a i r  t o  t h e  
tunnel  a t  a r a t e  near ly  equal t o  the  LN2 i n j e c t i o n  rate. The i n j e c t i o n  of the  r e l a -  
t i v e l y  w a r m  a i r  undoubtably i n i t i a l l y  contr ibuted t o  the  ex is tence  of t h e  temperature 
f r o n t s  f o r  one or two c i r c u i t  times. (See f i g .  2 . )  Beyond about t w o  c i r c u i t  t i m e s ,  
t he  mixing associated with the  ejector opera t ion  caused the  temperature f r o n t s  t o  
decay and produce a more uniform temperature inc rease  as can be seen i n  f i g u r e  2 .  

Veloci ty  and Pressure F luc tua t ions  

Resul ts  of measurements of ve loc i ty  and pressure  f l u c t u a t i o n s ,  made prior t o  the  
temperature-front i nves t iga t ion  using a hot-wire probe and a dynamic pressure  t rans-  
ducer,  are presented i n  f igu res  9 through 1 2 .  For the  f l u c t u a t i n g  measurements t he  
mean tunnel  flow w a s  i n  a s teady-s ta te  condi t ion ( i .e . ,  Mach number, t o t a l  tempera- 
t u re ,  and t o t a l  p ressure  were cons tan t  with t i m e ) .  The ve loc i ty  f l u c t u a t i o n s ,  
normalized by the  local mean v e l o c i t y ,  shown i n  f i g u r e  9 (Tt = 280 K) w e r e  about 
2 percent  over t he  t e s t  range of Mach number and Reynolds number. A t  Tt = 140 K ,  
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the  normalized f l u c t u a t i o n s  ( f i g .  10) increased s l i g h t l y  both with Mach number and 
Reynolds number and ranged from 1.8 t o  3.0 percent.  

1 ' The rms pressure  f luc tua t ions  measured a t  t h e  w a l l ,  normalized by t h e  l o c a l  mean 
s t a t i c  pressure  i n  f i g u r e  11 (Tt = 280 K ) ,  range from about 2 X 

0.02 t o  0.20 percent .  The l e v e l s  i n  f i g u r e  11 show a s i g n i f i c a n t  increase  with 
increas ing  Mach number and f o r  a constant  Mach number show a s l i g h t  decrease with 
Reynolds number. When the  total  temperature w a s  decreased from 280 K to  140 K,  wi th  
the  corresponding s i g n i f i c a n t  increase  i n  Reynolds number, t h e r e  was only a s m a l l  
increase  i n  t h e  levels of t he  pressure  f luc tua t ions  f o r  t he  var ious Mach numbers. 
(See f i g .  1 2 . )  The v a r i a t i o n  of the  pressure f l u c t u a t i o n s  with Mach number and 
Reynolds number shown i n  f i g u r e  1 2  is approximately t h e  same a s  t h a t  found f o r  t h e  
higher  temperature i n  f i g u r e  11. 

to  2 X or 

I 
I 
I 

I ' 
1 

Once some assumptions a r e  made, ve loc i ty  f l u c t u a t i o n s  i n  the  s e t t l i n g  chamber ' can be ca l cu la t ed  from measured pressure  f luc tua t ions  by using the  simple wave 
equation 

' The r e s u l t s  show the  v e l o c i t y  f luc tua t ions  ca lcu la ted  from pressure  f l u c t u a t i o n s  

i 
l w i r e ,  f o r  t e s t - sec t ion  Mach numbers of 0.3 to  0.8, respec t ive ly .  These r e s u l t s  ind i -  

1 
I 

range from about 36 t o  113 percent  of t he  ve loc i ty  f luc tua t ions  measured with a h o t  

cate as t h e  t e s t - sec t ion  Mach number increases  t o  the  range used i n  t ransonic  test- 
ing,  t he  ve loc i ty  f luc tua t ions  i n  t he  s e t t l i n g  chamber are pr imar i ly  due t o  sound. 

F luc tua t ing  Pressure  and Velocity Power Spectra  

I The measurements from the  pressure  transducer and ho t  w i r e  were used t o  ob ta in  

the  f l u c t u a t i n g  pressure  spec t r a  are presented i n  f i g u r e s  13  and 1 4  and the  f luc tu -  
a t i n g  ve loc i ty  s p e c t r a  i n  f igu res  15 and 16. There a r e  s i g n i f i c a n t  d i s c r e t e  f r e -  
quencies p re sen t  i n  the  spec t r a  and they a r e  most ev ident  i n  the  spec t r a  obtained 
with the  pressure  t ransducer .  (See f i g s .  13  and 1 4 . )  The d i s c r e t e  f requencies  were 
apparent ly  generated by the  fundamental of the f a n  blade passing frequency and i t s  

1 harmonics. A three-dimensional p l o t  of the  f luc tua t ing  pressure  spec t r a  versus  f r e -  
, quency i s  shown i n  f i g u r e  13 f o r  Mach numbers of 0.30, 0.50, 0.60, 0.70, and 0.80 and 
I show numerous d i s c r e t e  sp ikes  i n  the  spec t r a  apparent ly  r e s u l t i n g  from t h e  fan  blade 
I passage. The l e v e l  of t he  spec t r a  shows a s l i g h t  increase  with increas ing  Mach num- 
I ber  a t  the  low frequencies  and a more s i g n i f i c a n t  i nc rease  i n  l e v e l  a t  the  higher  
1 f requencies .  The s p e c t r a  i n  f i g u r e  14 are shown f o r  t h e  frequency nondimensionalized 
I by t h e  r o t a t i o n a l  speed of t he  f an  n and the number of blades on the  fan  N. The 

da ta  c o r r e l a t e  q u i t e  w e l l  f o r  t he  fundamental frequency and the  f i r s t  e i g h t  harmonics 
by using t h i s  dimensionless frequency parameter over a range of Mach number from 0.30 
t o  0.80. These r e s u l t s  corroborate  the  ind ica t ions  from f i g u r e  13 which ind ica ted  
the  peaks i n  t h e  pressure  spec t r a  a r e  from the f an  blade passage. 

I power spec t r a  f o r  the  normalized pressure  and v e l o c i t y  f luc tua t ions .  The r e s u l t s  f o r  

l 

The s p e c t r a  f o r  t h e  ve loc i ty  f luc tua t ions ,  obtained with the  hot  w i r e  i n  t he  
s e t t l i n g  chamber, have been transformed i n t o  dimensionless coordinates  and are shown 
fo r  a range of Mach numbers i n  f igu res  15 and 16. The frequency has been nondimen- 
s iona l i zed  by t h e  v e l o c i t y  i n  the  s e t t l i n g  chamber and the  diameter of  t h e  s e t t l i n g  
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chamber. The d i s c r e t e  peaks f r o m  t h e  fan  b lade  passage are no t  d i s c e r n i b l e  a t  f r e -  
quencies higher than about t h e  t h i r d  o r  fou r th  harmonic of  t h e  f a n  b lade  passage 
because t h e  random ve loc i ty  f l u c t u a t i o n s  mask t h e  d i s c r e t e  f requencies  of t h e  f an  
blade a t  t h e  higher f requencies .  I n  f i g u r e s  13 and 14 t h e r e  are d i s c r e t e  f requencies  
evident  up t o  the  e ighth  harmonic of t he  fan  blade passage because t h e  pressure  
t ransducer  responds pr imar i ly  to  t h e  p re s su re  pulse ;  however, i n  f i g u r e s  15 and 16 
the  da t a  become random a f t e r  t h e  t h i r d  o r  fou r th  harmonic because the  h o t  w i r e  
responds t o  both the  pressure  f l u c t u a t i o n  and t h e  v o r t i c i t y  i n  t h e  flow. There are 
l a r g e  d i s c r e t e  f requencies  ( i . e . ,  sp ikes )  i n  t h e  spec t r a  i n  f i g u r e  15 t h a t  occur 

between Tt = 140 K. 

The reason f o r  t hese  sp ikes  is  unknown; however, it is  speculated these  d i s c r e t e  
f requencies  could poss ib ly  be due t o  fou r  causes.  

2lTD 
U 

3 X l o 3  < - f < 1 X l o 4  f o r  each of t h e  Mach numbers a t  

One poss ib le  cause of t hese  sp ikes  is  eddy shedding behind t h e  screens  i n  t h e  
s e t t l i n g  chamber s i m i l a r  t o  t he  eddy shedding not iced by Schubauer, Spangenberg, and 
Klebanoff ( ref .  9 ) .  I n  the  t e s t  se tup  i n  t h e  0.3-m TCT t h e  h o t  w i r e  w a s  loca ted  
7.75 in .  downstream of the  40-mesh screen,  which had a s o l i d i t y  of  0.452. The 
Reynolds number based on the  diameter of t he  screen w i r e  (0.0065 i n . )  w a s  w e l l  above 
t h e  c r i t i c a l  Reynolds number required f o r  eddy shedding; however, as t h e  Mach number 
w a s  increased from 0.30 t o  0.80 t h e  frequency a t  which t h e  sp ikes  occurred (about 
8 kHz) remained constant .  This cons tan t  frequency is  un l ike  t h e  r e s u l t s  repor ted  i n  
re ference  9 and may be due i n  par t  t o  t h e  much higher  Reynolds number (based on the  
diameter of t h e  screen w i r e )  than those reported i n  re ference  9. 

Another p o s s i b i l i t y  f o r  t h e  l a r g e  sp ikes  noted i n  f i g u r e  15 could be a vor tex  
shedding from t h e  hot  w i r e  i t s e l f .  The Reynolds numbers based on the  hot-wire diam- 
e ter  range from 42 t o  81 which are  i n  the  range of flow condi t ion  where t h e  "Von 
Karman vor tex-s t ree ts"  could be observed; however, S t rouhal  numbers f o r  t h e  h o t  w i r e  
w e r e  about two orders  of magnitude below classical Strouhal  numbers presented by 
Roshko ( r e f .  10) .  

A t h i r d  cause of t h e  sp ikes  could be leaks  i n  t h e  s e t t l i n g  chamber which could 
generate  noise t h a t  might be de tec ted  i n  t h e  s e t t l i n g  chamber. This source must be 
discounted s i n c e  t he  sp ikes  d id  not  show up i n  t h e  s p e c t r a  from t h e  pressure  
t ransducer .  

A fou r th  cause of t he  sp ikes  could be " s t r a i n  gauging" of t h e  h o t  w i r e .  The 
sp ikes  occurred a t  a cons tan t  frequency and increased i n  l e v e l  with Mach numbers 
which suggests s t r a i n  gauging. However, t h e  l o w  v e l o c i t i e s  and l o w  loading of  
the  w i r e  cast doubt t o  t h i s  argument. There w e r e  no d i s c r e t e  f requencies  i n  t h e  
hot-wire spec t ra  a t  280 K, shown i n  f i g u r e  16, even though t h e  w i r e  w a s  mounted on 
the  probe w i t h  l i t t l e  or no s lack .  However, it is  poss ib l e  f o r  t h e  w i r e  t o  c o n t r a c t  
enough a t  140 K t o  become t a u t ,  and under t h i s  condi t ion  it might be poss ib l e  t o  
exc i te  the  t a u t  w i r e  causing it t o  v i b r a t e  even with a low loading.  If t h i s  i s  t r u e ,  
t o  avoid s t r a i n  gauging, s l ack  must be p u t  i n  t h e  h o t  w i r e s  when t e s t i n g  a t  cryogenic 
temperatures even though t h e  flow ve loc i ty  i s  very l o w .  

A review of these  four  poss ib l e  causes f o r  t h e  sp ikes  i n  t h e  nondimensional 
spec t r a  ( f i g .  15)  i nd ica t e s  t h a t  none of t h e  explanat ions provides  a completely 
s a t i s f a c t o r y  answer, and the  reason f o r  t he  sp ikes  i s  s t i l l  uncer ta in .  

10 



Liquid Nitrogen P a r t i c l e s  i n  Tunnel Flow 

There has been much conjecture  about the  presence of l i q u i d  n i t rogen  d r o p l e t s  i n  
the  flow medium throughout t h e  c i r c u i t  of the 0.3-m TCT. Resul ts  presented by Singh, 
Marple, and Davis ( r e f .  11) indica ted  t h a t  no LN2 d rop le t s  w e r e  observed i n  the  0.3-m 
TCT a t  temperatures s l i g h t l y  higher  than the  free-stream s a t u r a t i o n  values  (a t o t a l  
temperature of about 100 K) a t  the  h ighes t  t o t a l  pressure.  Recent r e su l t s  of H a l l  
( r e f .  1 2 )  corroborated t h e  work of Singh, Marple, and Davis ( r e f .  ll), using a d i f -  
f e r e n t  measuring technique. H a l l  found t h a t  fo r  a s teady-s ta te  flow condi t ion ,  t he re  
were an i n s i g n i f i c a n t  number of l i q u i d  drople t s  i n  t he  t es t  medium i n  the  0.3-m TCT 
above about Tt = 100 K ( i .e. ,  s l i g h t l y  above free-stream s a t u r a t i o n  temperature) .  
However, t he  po in t  of conjec ture  a r i s e s  from e a r l i e r  tests by G a r t r e l l ,  Gooderum, 
Hunter, and Meyers ( r e f .  13) which ind ica ted  t h a t  LN2 d rop le t s  ex i s t ed  i n  t h e  0.3-m 
TCT up t o  a t o t a l  temperature of 250 K based on the  number of p a r t i c l e s  they found 
from ve loc i ty  measurements by using a laser Doppler velocimeter.  Because of t he  con- 
f l i c t i n g  r e s u l t s  on the  ex is tence  of LN2 d rople t s  a t  var ious t o t a l  temperatures i n  
the  0.3-m TCT, t h e  p re sen t  da t a  included an ana lys i s  t o  f u r t h e r  i nves t iga t e  the  pos- 
s i b l e  ex is tence  of LN2 d rop le t s  i n  s teady-state  flows. 

This ana lys i s  w a s  based on a s t a t i s t i c a l  technique which uses the  skewness 
parameter of t he  normalized ve loc i ty  f luc tua t ions  t o  i n f e r  t he  ex is tence  (or non- 
ex is tence)  of LN2 drople t s .  The skewness i s  defined as t h e  t h i r d  c e n t r a l  moment of 
the  random v a r i a b l e ,  and i f  it i s  equal to  zero, t h e  p robab i l i t y  d i s t r i b u t i o n  i s  sym- 
metric about t he  mean. F i r s t ,  t he  skewness of t h e  pressure  f luc tua t ions  w a s  calcu- 
l a t e d  from 

03 - 
Skewness (e) = I (93 P($) d 

P s c  -co P 

t o  determine whether t he  dis turbances i n  t h e  s e t t l i n g  chamber were symmetric. (See 
f i g .  1 7 . )  I t  can be in fe r r ed  from f igu re  1 7  t h a t  t he  p robab i l i t y  d i s t r i b u t i o n  of t he  
pressure  f l u c t u a t i o n s  (from a pressure  transducer) are symmetrical s ince  the  values  
of skewness s c a t t e r  near ly  uniformly above and below zero (i.e.,  values  close t o  
zero) over t he  t es t  range of Mach number and Reynolds number. Based on the  r e s u l t s  
of f i g u r e  17, it w a s  pos tu la ted  that  skewness of t he  normalized ve loc i ty  f l u c t u a t i o n s  
(from a ho t  w i r e )  should a l s o  s c a t t e r  uniformly about and c lose  to  zero unless  LN2 
d r o p l e t s  were s t r i k i n g  the  h o t  w i r e .  
would cause the  instantaneous vol tage to  increase and r e s u l t  i n  a p o s i t i v e  skewness. 
The skewness of t he  normalized ve loc i ty  f luc tua t ions  w a s  ca l cu la t ed  from 

I f  drople t s  w e r e  t o  s t r i k e  the  h o t  w i r e ,  they 

co - 
Skewness (i)sc = Ice (ir P(:) d y U 

(see f i g .  
w a s  no t  a 

18) and shows a negat ive skewness. This negat ive skewness ind ica t e s  t h e r e  
s i g n i f i c a n t  number of l i q u i d  drople t s  s t r i k i n g  the  ho t  w i r e .  I n  f a c t ,  t he  

negat ive skewness would i n d i c a t e  the  exis tence of s o l i d  p a r t i c l e s  s t r i k i n g  the  h o t  
w i r e  ( i . e . ,  due t o  energy add i t ion  t o  the  wire) ,  a r e s u l t  a l s o  reported by H a l l  i n  
re ference  1 2 ,  which he a t t r i b u t e d  the  s o l i d  p a r t i c l e s  a t  temperatures below 200 K t o  
f rozen o i l  d rop le t s .  Thus, from t h e  skewness parameter developed from the  normalized 
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f l u c t u a t i n g  v e l o c i t i e s  ( f i g .  181, it appears t h a t  over a l a r g e  range of Mach number 
and Reynolds number, down t o  a t o t a l  temperature of 140 K, there a r e  no s i g n i f i c a n t  
number of LN2 d rop le t s  i n  the  s teady-s ta te  mean flow, b u t  t he re  could be s o l i d  par- 
t ic les  i n  t h e  f l o w .  The r e su l t s  from t h i s  study and the  r e s u l t s  from H a l l  ( r e f .  1 2 )  I 

i nd ica ted  the  p a r t i c l e s  i n  the laser Doppler velocimeter (LDV) experiment of G a r t r e l l ,  I 

Gooderum, Hunter, and Meyers ( r e f .  13) were probably s o l i d  p a r t i c l e s ,  of poss ib ly  o i l  , 
or some o the r  impurity, and not  LN2 d rop le t s .  

CONCLUSIONS 

From measurements made i n  t he  s e t t l i n g  chamber of the  Langley 0.3-m TCT over a 
range of  Mach number, Reynolds number, and t o t a l  temperature with a hot-wire probe 
and a pressure t ransducer ,  t h e  following conclusions can be made: 

(1) There were no ind ica t ions  of the  ex is tence  of temperature f r o n t s  based on 
temperatures measured with a high-response hot-wire probe using th ree  d i f f e r e n t  tech- 
niques t o  obtain s i g n i f i c a n t  s t e p  changes i n  the  r a t e  of  LN2 i n j e c t i o n .  I 

(2) The normalized pressure and ve loc i ty  f luc tua t ions  a t  two t o t a l  temperatures 
and over a la rge  range of Mach number and Reynolds number w e r e  about 0.02 t o  
0.20 percent  and about 1 .8  t o  3.0 percent ,  respec t ive ly .  

(3) The pressure f luc tua t ion  power spec t r a  from a pressure  t ransducer  c o r r e l a t e  
with t h e  fan  blade passage through the  e ighth  harmonic of t he  fundamental frequency. 

I 

( 4 )  The ve loc i ty  f luc tua t ion  power spec t r a  from hot-wire d a t a  do no t  i n d i c a t e  I 

1 
1 

peaks due t o  the fan blade passage beyond about t he  t h i r d  or  fou r th  harmonic because 
of the  higher  levels and random nature  of the  ve loc i ty  f l u c t u a t i o n s  a t  the  higher  
f requencies .  

(5)  The cause of the  sp ikes  t h a t  occurred i n  the  nondimensional spec t r a  of t he  
ve loc i ty  f luc tua t ions ,  a t  a t o t a l  temperature of 140 K, is uncertain.  , 

( 6 )  Down to  a t o t a l  temperature of 140 K ,  t h e r e  w a s  no evidence of l i q u i d  
ni t rogen drople t s  i n  the  flow based on an ana lys i s  of  t h e  skewness of the  f luc tua t ing  
pressure  and ve loc i ty  s igna l .  

NASA Langley Research Center 
Hampton, VA 23665-5225 
March 1 7 ,  1986 
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